Innovative Industrial Applications of Robots: The RoboCup@Work and RoCKIn@Work Competitions

Hochschule

Bonn-Rhein-Sieg

Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Professor for Autonomous Systems

Computer Science Department Bonn-Rhein-Sieg University Grantham-Allee 20 53757 Sankt Augustin Germany

gerhard.kraetzschmar@brsu.de

From RoboCup to ...

Gerhard Kraetzschmar Bonn-Rhein-Sieg University of Applied Sciences Sankt Augustin, Germany

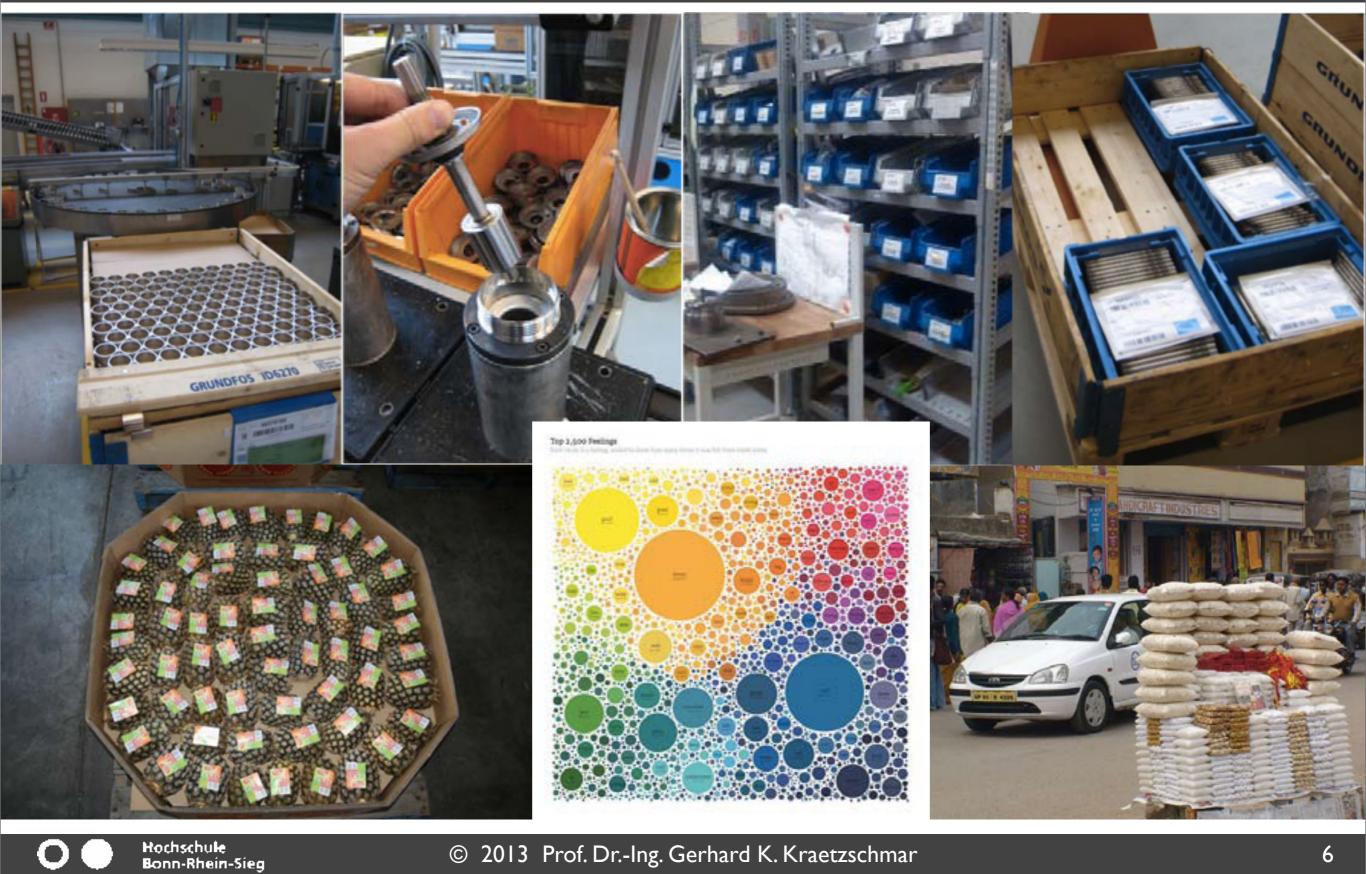
©2013 RoCKIn project, contract no. FP7-ICT-601012

Robot Technology

© Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Robot Technology

Robot Technology


© Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Challenges in Manufacturing and Logistics

- feeding parts from a palette onto a machine
- Ioading parts from machines onto a palette
- feeding a set of parts from several containers into a tray for a subsequent assembly process
- performing pre-assembly tasks
- packing parts and boxes into containers
- unloading boxes from containers
- sorting objects from unstructured heaps
- wrapping objects (e.g. before packing and shipping them)
- assembling complex objects from parts based on an example
- painting objects according to an example given as image
- moving parts and objects around

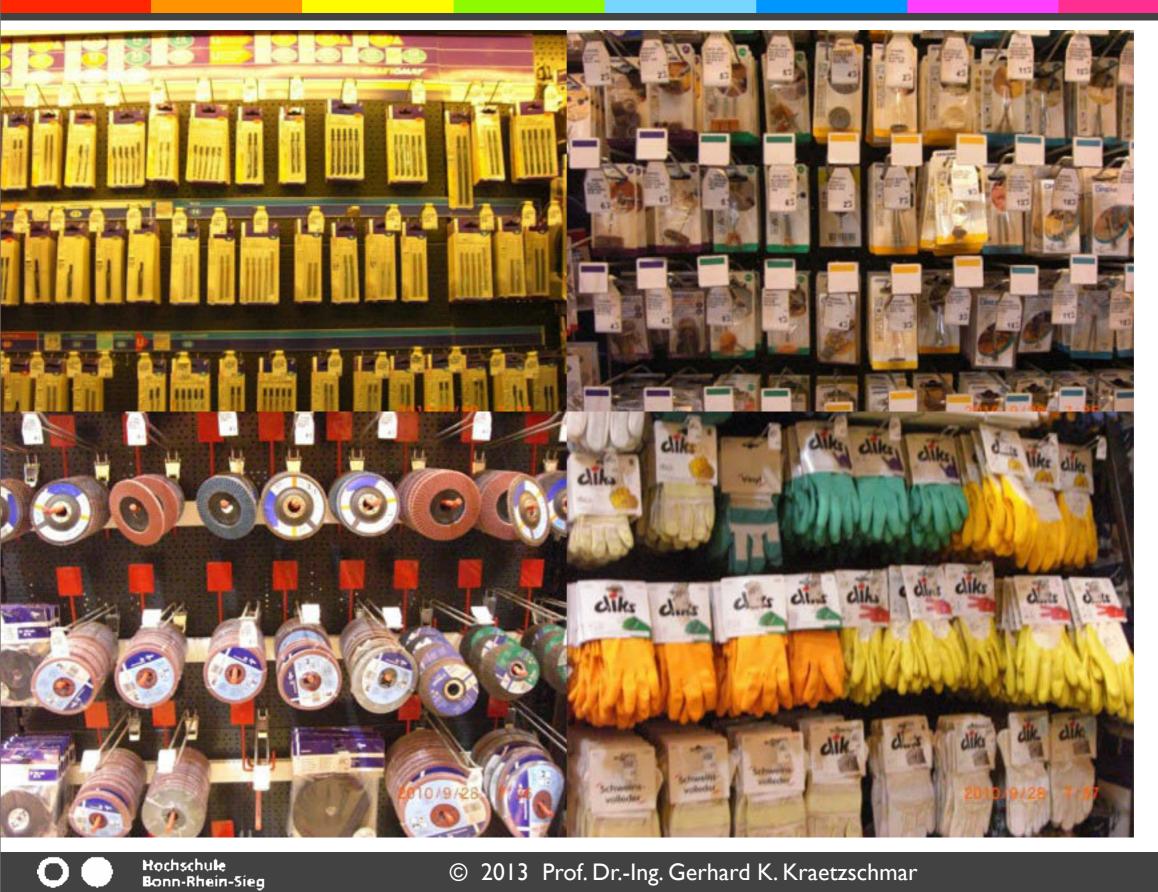
Hochschule

Example Scenario: Parts Handling

© 2013 Prof. Dr.-Ing. Gerhard K. Kraetzschmar

© 2013 Prof. Dr.-Ing. Gerhard K. Kraetzschmar

© 2013 Prof. Dr.-Ing. Gerhard K. Kraetzschmar



© 2013 Prof. Dr.-Ing. Gerhard K. Kraetzschmar

© 2013 Prof. Dr.-Ing. Gerhard K. Kraetzschmar

© 2013 Prof. Dr.-Ing. Gerhard K. Kraetzschmar

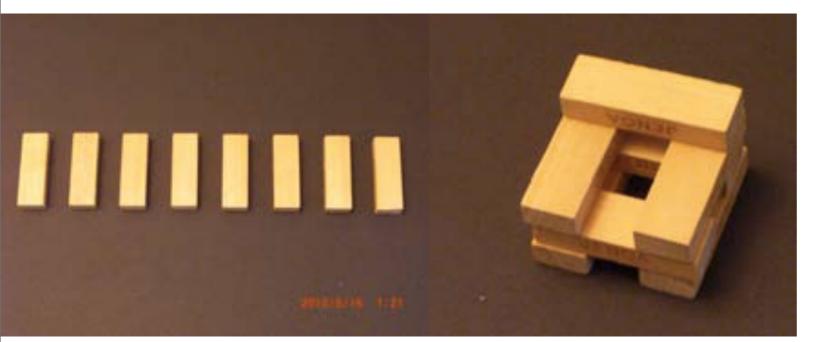
O Hochschule Bonn-Rhein-Sieg

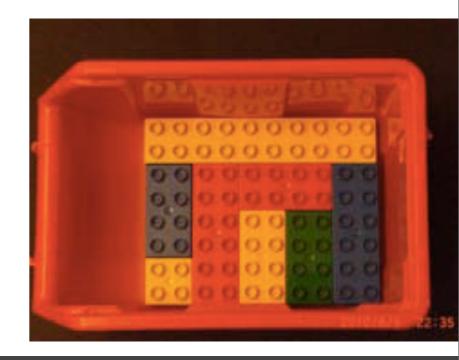
© 2013 Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Example Scenario: Bale Gathering

© 2013 Prof. Dr.-Ing. Gerhard K. Kraetzschmar

- Extend RoboCup with a league attractive to industry
- Target new challenge problems for industrial applications
- Combine ideas that work from
 - RoboCup Soccer (fascination of competitions)
 - RoboCup Rescue (rigid evaluation by well-defined measures)
 - RoboCup@Home (staged sequence of increasingly complex tests)
 - into a new RoboCup challenge
- Drive the use of simulation in the software development process for real robots

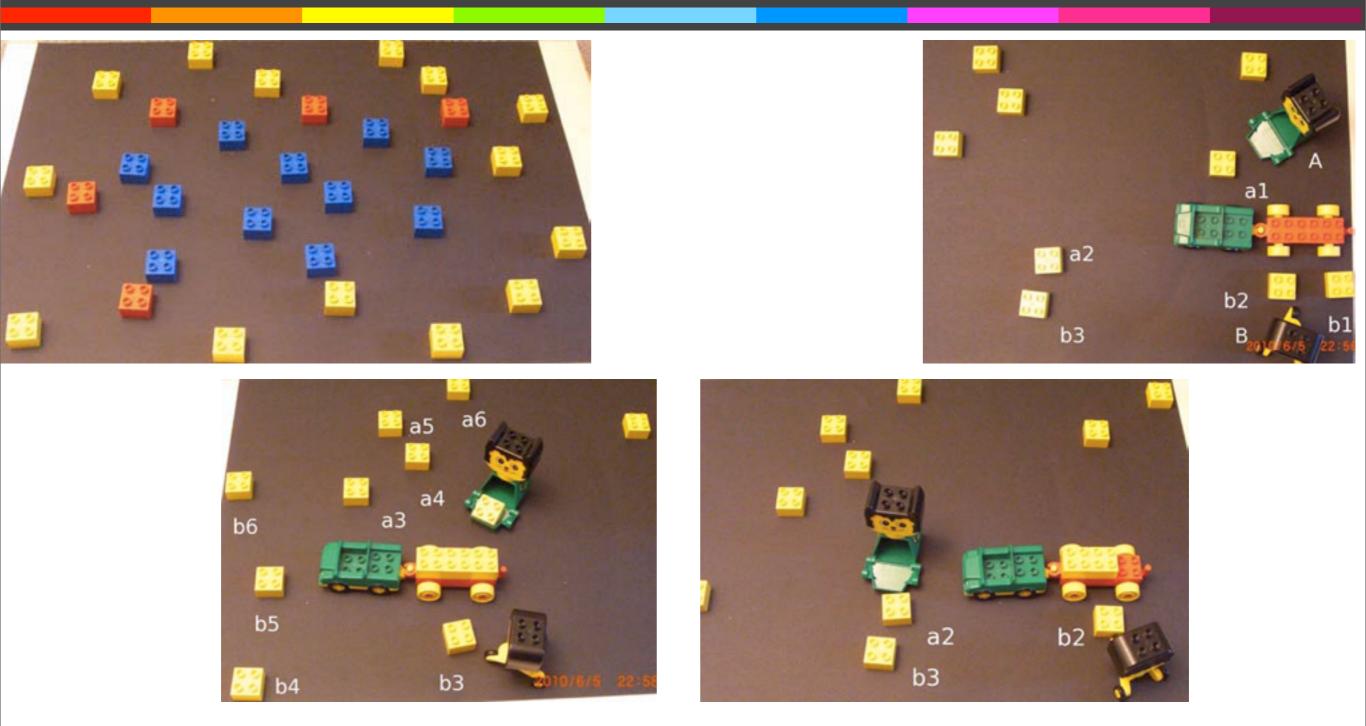

- Industry needs it and wants it
- Funding agencies welcome it
- RoboCup teams gain opportunities for cooperation
- RoboCup Federation complements its competition range



Parts Handling Contest Scenario


© Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Object Assembly Contest Scenario



© Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Bale Gathering Contest Scenario

A nice version of this for RoboCupJunior would be possible

Alternative? post-reception table cleaning

Hochschule

- Competition design is not trivial!
- How to design successful competitions?
- How to design competitions to drive scientific progress?
- How to design competitions to allow for benchmarking?

Expectations

Competitions:

- interesting to watch
- fair
- safe
- maintaining public order
- rewarding participating people
- Scientific competitions:
 - giving feedback on scientific ideas
 - fostering research
 - attracting students
- Benchmarking through competitions:
 - evaluating, measuring, comparing approaches
 - allowing for analysis

Hochschule

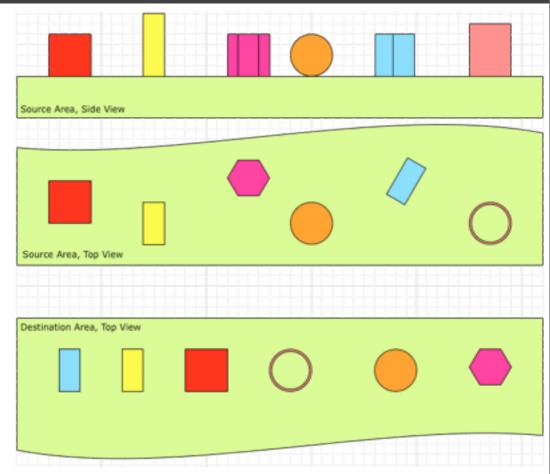
Competition Design

Identify a challenge:

- Address an open research problem
- Address an open engineering problem
- Address an open integration problem
- But be feasible: solutions must be within reach
 - Scenario and task simplifications
 - DARPA Grand Challenge
- Consider entry barriers:
 - investment cost
 - personnel effort
 - existing performance levels

Hochschule


RoboCup@Work Competition Design


Current

- **BNT Basic Navigation Test** (show me that you can navigate and not get lost)
- **BMT Basic Manipulation Test** (show me that you can perceive objects, grasp them, and do pick and place)
- BTT Basic Transportation Test (combine the first two tests)
- CTT Competitive Transportation Test (two teams compete at same time; resource conflicts)
- Future CBT Conveyor Belt Test
 - Advanced Manipulation Test (constrained grasping, articulated objects, variability, precision, obstacles)
 - **Assembly Test** (putting things together, HRCoop, bimanual manipulation)
 - **Feeding Test** (dynamics; taking and putting things on belts, feeders, carousels)
 - **Logistics Test** (picking, placing, packing, closing, transporting)
 - Cooperative Manipulation Test
 - Cooperative Transportation and Logistics Test

Hochschule

RoboCup@Work Testbed

symbolic task descriptions!

Monday, August 05, 13

Hochschule

- perception in static and dynamic environments, varying environmental conditions
- path planning and motion control of mobile bases in dynamic environments
- grasp planning, trajectory planning, and motion control of mobile manipulators
- planning and decision making
- representation of plans, knowledge, strategy and tactics
- adaptivity and learning
- cooperation in both cooperative and competitive environments
- human-robot and robot-robot interaction
- design, construction, and operation of robust robots at affordable cost
- multiagent planning and scheduling, multi-criteria optimization
- logistics
- mobile manipulation
- cooperative mobile manipulation
- benchmarking

Bonn-Rhein-Sieg

Hochschule

- perception in static and dynamic environments, varying environmental conditions
- path planning and motion control of mobile bases in dynamic environments
- grasp planning, trajectory planning, and motion control of mobile manipulators
- planning and decision making
- representation of plans. knowledge. strategy and tactics
- Special tribute to Matteo: ---> functionalities!!!!
- cooperation in both cooperative and competitive environments
- human-robot and robot-robot interaction
- design, construction, and operation of robust robots at affordable cost
- multiagent planning and scheduling, multi-criteria optimization
- logistics
- mobile manipulation
- cooperative mobile manipulation
- benchmarking

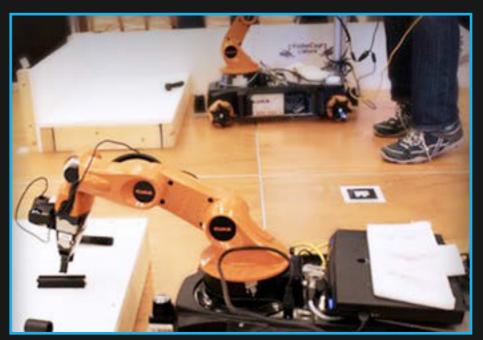
Bonn-Rhein-Sieg

Hochschule

- perception in static and dynamic environments, varying environmental conditions
- path planning and motion control of mobile bases in dynamic environments
- grasp planning, trajectory planning, and motion control of mobile manipulators
- planning and decision making
- representation of plans, knowledge, strategy and tactics
- adaptivity and learning
- cooperation in both cooperative and competitive environments
- human-robot and robot-robot interaction
- design, construction, and operation of robust robots at affordable cost
- multiagent planning and scheduling, multi-criteria optimization
- logistics
- mobile manipulation
- cooperative mobile manipulation
- benchmarking

Bonn-Rhein-Sieg

Hochschule


RoCKIn@Work

Innovative robot applications in industry that:

- Work interactively with humans
- Have reduced initial programming requirements
- Have enhanced physics simulation capabilities

•Contribute to the continued commercial competitiveness of European industry

©2013 RoCKIn project, contract no. FP7-ICT-601012

- Continuation of current RoboCup@Work competition
 Long-term objective:
 - improving manufacturing in tasks currently not doable for (classical) industrial robotics
 - new innovative applications, new markets
- Setup ideas ...
- Variations and variability ...

Motivation:

- Supposedly, about 50% of all shipments by Amazon are returned
- Many reasons: wrong part, item not fitting, wrong size, faulty part, etc.
- Return shipments must be opened, checked, and processed
 - Parts in original packaging -> return to storage shelves
 - Parts opened, not in original packaging -> check and repackage
 - Faulty parts -> dispose or deliver to repair
- Idea: Have robot open parcels using a cutter
 - requires 2 arms or combination of arm and fixation device
- Setup ideas ...

Hochschule

Bonn-Rhein-Siea

Variations and variability ...

- Motivation: restaurant experience in Rome
- Idea: Have a robot assisting a restaurant chef in pasta cooking
 robot cooks pasta
 - chef prepares sauce and readies dish for delivery
- Setup ideas
- Variations and variability ...
- Note: This IS an industrial application, although the robotics industry currently does not yet believe so!

- Motivation:
 - Do something requiring bimanual manipulation and compliant motion
- Guiding ideas:
 - cleaning, polishing, finishing surfaces
 - painting or glueing surfaces
 - spreading mortar
 - tiling
 - decorative painting of cups

Organizing a fair competition

Rule definition process: rulebook addressing the following aspects:

- Vision; challenge addressed
- Organization
 - pre-competition: (league organization)
 - Technical Committee (TC), Organizational Committee (OC)
 - Web site, mailing lists
 - competition: (tournament organization)
 - Schedule, team meetings, practice schedule, competition schedule
 - Scoring and ranking
 - Referees, referee instructions, roles of TC and OC
 - Code of conduct; disqualification
- Participation (Qualification Process)
- Test description
 - Design and implementation of the environment, objects, subjects
 - Design and behavior of robots
 - Task
 - Rules for task execution (time available, team order, ...)

Hochschule

- Definitely fix rules BEFORE the competition!
- Latest rule fixes can be made at team meeting before competition starts!
- NEVER change rules during the competition!
- Rule clarifications can be done by TC!
- In case of problems the TC+OC decides!
- OC should take care of organization!
- TC should ensure rule implementation!
- Keeping clear role assignment supports smooth competitions!

Hochschule

Other considerations

Attracting an audience

- Allowing for good views; bleachers
- Light! Light! Light!
- Noise! Noise! Noise!
- Ensuring safety
 - Separation of audience and arena
 - Emergency stop?? Robot specs
- Maintaining public order
 - Security precautions (fire, riots, epidemics)
 - Controlling fan behavior
- Rewarding people

Hochschule

- Make the award ceremony a real show!
- EVERY participant is a winner!
- Give visibility to sponsors and organizers!
- Remember to mention not only big shots!

- Keep rules stable while most teams cannot yet perform really well
- When more than half the teams can solve the challenge, it is time to push the border
- Design competitions with controlled variability and scalability
 - Attract students by being at the brink of the state of the art
 Create opportunities for student research projects
 Combine with coursework; give credit

Challenges for Benchmarking

- What are the evaluation criteria?
 - Of interest: coverage of problem space, robustness, performance
 - In practice: often performance criteria dominate
 - Ranking: how to do it if evaluation is based on multiple criteria
- How to measure the evaluation criteria?
 - (seemingly) easy: time, space, #right solutions, anything countable, measurable
 - still possible to make a lot of mistakes
 - difficult: portability, robustness, openness, extensibility, interoperability, coverage
 - quantitative assessment prohibitive; maybe only expert judgement possible
- How are the evaluation criteria influenced?
 - ... by the environment
 - ... by problem parameters
 - ... by randomness and other circumstances

Hochschule

What is the goal of doing benchmarking?

- Assessing a single system in different environments / under different conditions wrt. coverage, robustness, performance
- Comparing different systems for making a choice
- What do you want to benchmark?
 - an algorithm
 - algorithms themselves are not benchmarkable, only implementations
 - the implementation of a function or an algorithm
 - may be easy; at least some experience available for most cases
 - a more complex system consisting of several modules
 - problem of how to attribute system performance to its components

Hochschule

Impact

- Prerequisites for Impact:
 - Formulate the challenge clearly and simple
 - Implement knowledge sharing activities
 - Raise attention in the community
 - Create public awareness
- Some scientific results from RoboCup
 - omnidirectional vision in MSL
 - omnidirectional drive systems in MSL, SSL, Junior
 - fast, robust vision in all leagues
 - reliable communication
 - fast, robust walking for Sony Aibo
 - speech commanding robots in @Home

Hochschule

The consortium

- Find out more:
 - http://rockinrobotchallenge.eu
 - Twitter: @RoCKInchallenge
 - Facebook: search 'RoCKiN'

©2013 RoCKIn project, contract no. FP7-ICT-601012