Benchmarking Intelligent Service Robots through Scientific Competitions: the RoboCup@Home approach

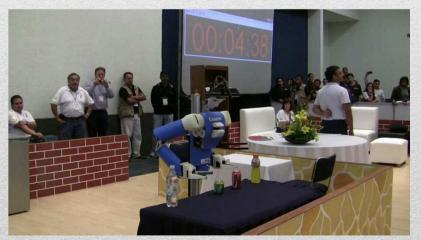
Luca locchi

Sapienza University of Rome, Italy

Motivation

- Benchmarking Domestic Service Robots
 - Complex Integrated Systems
 - Human-Robot Interaction
 - Large variety of tasks
 - Evaluating integrated AI

About RoboCup@Home


- Starts in 2006
 - 8 international competitions
 - Many regional competitions
- Largest competition for domestic and service robots

Large variety of tasks

Benchmarking Domestic Service Robots

Functional benchmarking

• Usually based on data set collection and off-line processing

Difficulties in benchmarking DSR

- Human involved
- Real environments
- Integration of several capabilities coming from different research fields
- Large variety of tasks

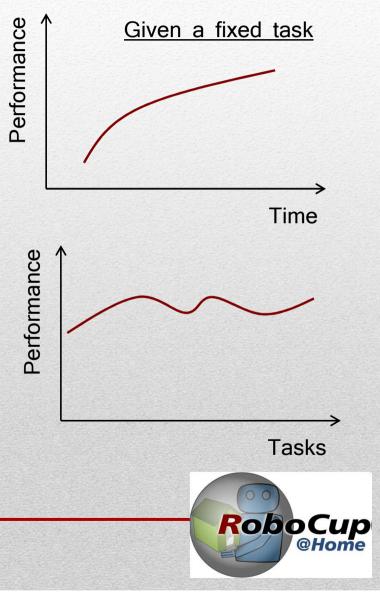
Robotic scientific competitions

- DARPA Challenges
- RoboCup Soccer, Rescue, @Home, @Work
- AAAI / ICRA / IROS robot competitions
- RoboCup Junior, Eurobot
- RoCKIn

Advantages of Competitions

- Set up of common test-beds
- Attractive for many teams (research groups)
- Collaboration and knowledge sharing
- Evolution over time

Observations from other Robot Competitions


- Little HRI involved
- Limited application orientation
- No real world environment
- Very specific rules and regulations for robots and environment
- Often requires many resources (special environment, many robots)
- Danger of developing towards local optima

Local Optima in Benchmarking

Fixed task + improving performance over time Local optimum (overfitting)

Set of changing tasks + maintaining performance over time Global optimum

RoboCup@Home

(Difficulties in) Benchmarking DSR + (Advantages of) Benchmarking through competitions =

RoboCup@Home

RoboCup@Home competition allows for testing DSRs in many integrated tasks (not single functionalities) in real or realistic environments with the interaction of external users (not developers of the system under test).

RoboCup@Home approach

Integrated system benchmarking of DSR:

- Realistic/real environments
- Definition of many tests related to desired functionalities and evaluated by external users
- Changing tests over the years to keep performance "constantly good"
- Statistical evaluation for measuring league progresses

Can this approach be applied also to evaluate the development of a single "medium-term" project?

RoboCup@Home Scenario and Concepts

- Autonomous robots
- Human-Robot Interaction
- Non-standardised realistic domestic environment and real public areas
- Many tests related to desired functionalities
- Changing tests over the years to keep performance "constantly good"
- Statistical evaluation for measuring league progresses

Current focus of RoboCup@Home

Functional abilities:

- Navigation
- Mapping
- Person recognition
- Person tracking
- Object recognition
- Object manipulation
- Speech recognition
- Gesture recognition
- Cognition

Current focus of RoboCup@Home

System properties:

- Ease of use
- Fast calibration and setup
- Natural and multi-modal interaction
- Attractiveness and ergonomics of the robot
- Adaptivity and general intelligence
- Robustness
- General applicability

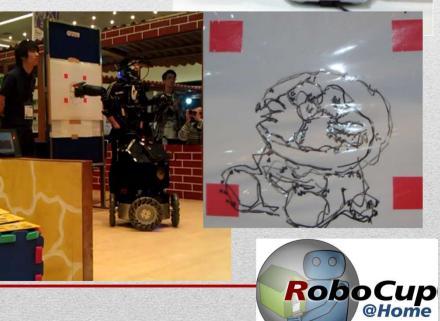
Implementation of RoboCup@Home

General rules

- 2 stages with different focus
 - Stage 1 for basic tasks
 - Stage 2 for more complex, integrated tasks
- High level of uncertainty in the environment (no standardization)
- Only natural interaction allowed
- Very short setup time (usually 1 minute)
- Partial score system for tests

Stage 1

- **Robot Inspection & Poster:** Autonomous registration to the competition, TC inspection, team poster
- Follow me: Lead the robot quickly on a path through an external scenario
- **Cocktail Party:** Deliver drinks to people in the apartment
- Clean up: Clean up a room in the apartment
- **Emergency Situation:** React to an unknown emergency situation
- **Technical Challenge**: Furniture-type Object perception
- **Open Challenge:** Present and demonstrate most important (scientific) achievements


Stage 2

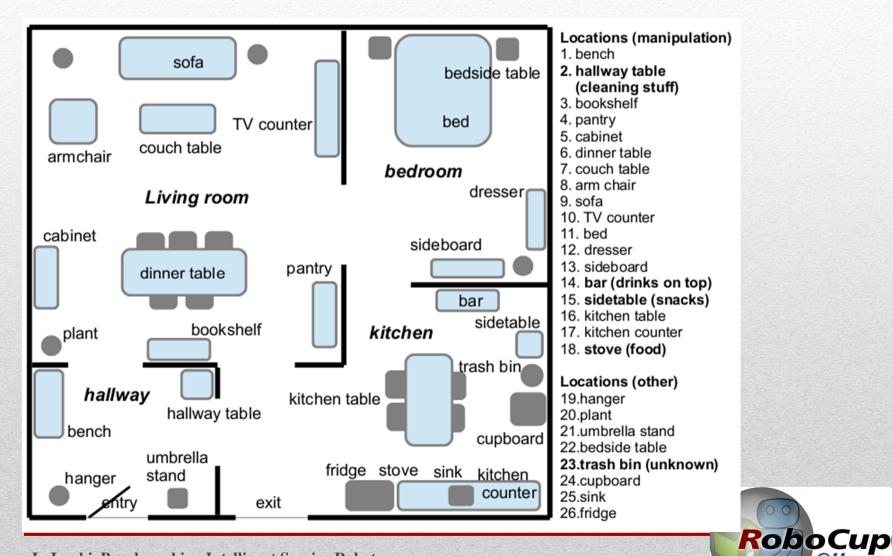
- Enduring General Purpose Service Robot: Solve multiple tasks not known beforehand upon request
- **Restaurant:** Mapping and serving drinks and food in a real unknown restaurant
- **Demo Challenge:** Demonstration of health care abilities (e.g., elder, children)
- **Finals:** Open demonstration with external jury evaluation + Exec evaluation

L. Iocchi. Benchmarking Intelligent Service Robots

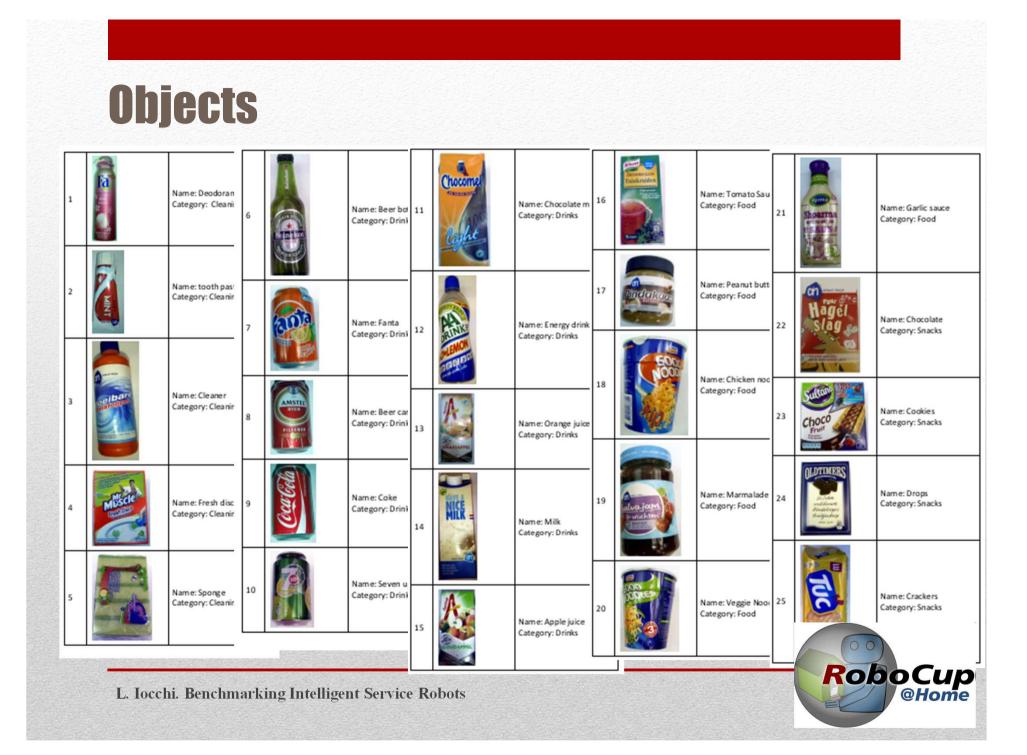
Implementation of RoboCup@Home

	Navigation	Mapping	Person Recogn.	Person Tracking	Object Recogn.	Object Manipul.	Speech/ Gesture Recogn.	Cognition
Follow Me	49 %		6 %	39 %			6 %	
Clean Up								
Cocktail Party								
Emergency Situation		De	efined by	y the Teo	chnical	Commi	ttee	
General Purpose Service Robot								
Restaurant								
Open Challenge								
Demo Challenge			De	fined by	y the tea	ms		
Final								

Test evolution: 'follow me' example


2007: proof of concept, special markers on the walker allowed
2008: walker known, but no special markers
2009: walker unknown
2010: outside the arena (in the RoboCup venue)
2011: pre-defined interferences (people passing between walker and robot)
2012-2013: crowded and complex environment (changing floor through an elevator)
future: public environment with crowd and unpredictable interferences

Apartment, People and Objects



@Home

Person names

Standard Names	
Michael	Jessica
Christopher	Ashley
Matthew	Brittany
Joshua	Amanda
Daniel	Samantha
David	Sarah
Andrew	Stephanie
James	Jennifer
Justin	Elizabeth
Joseph	Lauren

Object categories and default locations

Category	Locations
Drinks	Bar
Cleaning stuff	Hallway table
Food	Stove
Snacks	Side table
Unknown	Trash bin

Benchmarking Robot Cognition: General Purpose Service Robot

- The test is about how much the robot can understand and reason about the environment and its task
- No predefined task
- Task goals are randomly generated at runtime
- Task goals can include multiple objects/locations, underspecified objects/locations and wrong information
- GPSR incorporates the abilities tested in all previous tests.

Benchmarking Robot Cognition: General Purpose Service Robot

Task goal is not predefined !

Given a set of known objects, known locations and known persons,

execute a **randomly generated task** from a set of templates.

Category	1
Category	-

Move to (LOCATION1), get (OBJECT) and put it at (LOCATION2)Go to (LOCATION1), find (PERSON) and follow him/her

••••

Category 2

Bring me a drink Look for a person in the apartment

•••

Category 3

Find an $\langle OBJECT \rangle$ in $\langle LOCATION \rangle$

(but there is not such an object in that location)

•••

Evaluation of the League

- Year by year statistical analysis to:
 - Measure overall performance
 - Drive developments
 - Plan for rule changes

Score system

Each test includes a set of the functional abilities

Ability	2008	2009	2010	2011	2012
Navigation	40%	33%	21.5%	20.5%	17.5%
Mapping	3%	3%	8%	8%	10.5%
Person Recognition	10%	12%	12.5%	13%	7%
Person Tracking	6%	4%	3%	3.5~%	6.5%
Object Recognition	13%	17%	8.5%	7%	9%
Object Manipulation	18%	17%	15%	16.5%	17.5%
Speech Recognition	7%	8%	15%	11.5%	13.5%
Gesture Recognition	3%	6%	3.5%	4%	2.5%
Cognition	-	-	13%	16%	16%

Distribution of functional abilities over tests evolves over time allowing for proper analysing and planning.

Score system

Example from Follow me 2012 test

		Navigation	Object Recognition	Person Recognition	Person Tracking	Object Manipulation	Speech recognition	Gesture recognition	Mapping	Cognition	
CP1	300	0.5			0.5						
CP2	300	0.3		0.2	0.3		0.1	0.1			
CP3	300	0.5			0.5						
Complete	100	1									
		490	0	60	390	0	30	30	0	0	1000

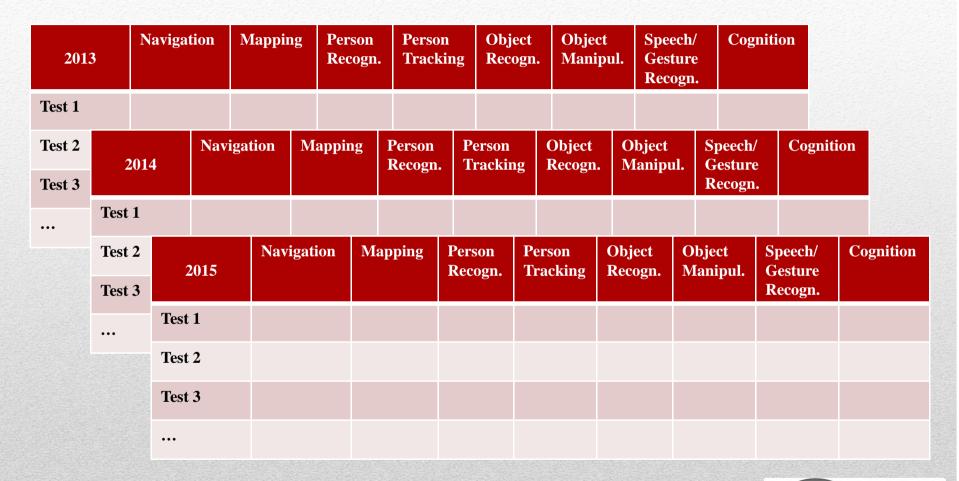
Evaluation 2006-2012

Ability	2008 [%]	2009 [%]	2010 [%]	2011 [%]	2012 [%]
Navigation	40 / 25	47 / 40	33 / 20	61 / 26	52 / 23
Mapping	100 / 44	100 / 92	21 / 10	33 / 10	10/4
Person Recognition	32 / 15	69 / 37	57 / 23	48 / 16	62 / 15
Person Tracking	100 / 81	100 / 69	100 / 72	100 / 76	62 / 33
Object Recognition	29 / 8	39 / 23	6/1	35 / 10	56 / 20
Object Manipulation	3/1	48 / 23	29 / 8	49 / 21	73 / 27
Speech Recognition	87 / 37	89 / 71	50 / 38	76 / 59	90 / 56
Gesture Recognition	0/0	0 / 0	62 / 26	100 / 49	88 / 37
Cognition	-	-	17/3	68 / 24	32 / 8
Average	41 / 21	$61.5 \ / \ 44.4$	41.6 / 22.4	63.3 / 32.5	58.2 / 24.8

Best/average score of the finalist teams.

Evaluation 2006-2012

Measure	2006	2007	2008	2009	2010	2011	2012
Number of teams	12	11	14	18	24	19	18
Total amount of tests	66	76	86	127	164	141	108
Percentage of succ. tests	17%	36%	59%	83%	74%	73%	58%
Avg. succ. tests p. team	1.0	2.5	4.9	7.3	6.3	6.5	4.2


Performance metrics of the RoboCup@Home league over the years

Performance do not always increase because of changes in the rules (major changes in 2008, 2010, 2012).

Good: we are not going towards a local optimum!!!

Your 3-years project on intelligent robots

"The main outcome of my project is general applicability"

RoboCup @Home

RoboCup@Home Community Resources

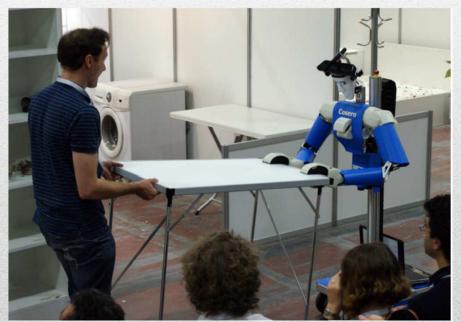
- Web site (information and rules)
- @Home Wiki (> 50 teams active worldwide) HW/SW/Papers...
- Mailing lists (active rule discussion)

www.robocupathome.org.

RoboCup @Home

Scientific Achievements

- Speech understanding in noisy environments
- Speaker localization for following human guides
- Detecting and tracking human operators using laser and RBGD cameras
- Detecting, learning and recognizing objects
- Complex two-hands object manipulation


Demonstrated within an integrated system

Future directions of RoboCup@Home

- More and more tests in the real world
- Improved cognitive and social skills
 - language skills
 - social behaviors
- Improved safety and security
- Human-robot cooperation
- Inter-team robot-robot cooperation
- Keep improving the adaptive benchmarking

Conclusions

- Benchmarking methodology based on the definition of several variable tests
- RoboCup@Home can drive the development of effective intelligent robots
- Statistical analysis can drive fast achievements of the league.
- Research groups can use RoboCup@Home to develop, test, evaluate and disseminate DSR solutions.

Thank you for your attention

Questions?

www.robocupathome.org

